Prev  |   Table of Contents   |  Next

Fire Ecology, 2014
Volume 10, Issue 3

Quaking Aspen Regeneration following Prescribed Fire in 
Lassen Volcanic National Park, California, USA

Authors: Ellis Q. Margolis and Calvin A. Farris
Pages: 14-26
DOI: 10.4996/fireecology.1003014

Prescribed fire is commonly used for restoration, but the effects of reintroducing fire following a century of fire exclusion are unknown in many ecosystems. We assessed the effects of three prescribed fires, native ungulate browsing, and conifer competition on quaking aspen (Populus tremuloides Michx.) regeneration in four small groves (0.5 ha to 3.0 ha) in Lassen Volcanic National Park, California, USA, over an 11 yr period. The effects of fire on aspen regeneration density and height were variable within and among sites. Post-fire aspen regeneration density generally decreased with greater conifer basal area (rs = −0.73), but there was a wide range of aspen regeneration densities (4000 to 36 667 stems ha-1) at transects with no live conifers post-fire. The height of aspen regeneration increased as a function of increasing years-since-fire (1 yr to 11 yr), but heavy browsing by mule deer (Odo-coileus hemionus Rafinesque) may alter future growth trajectories. Median percent of aspen regeneration browsed was high in burned (91 %) and unburned (81 %) transects. Only 7 % (282 stems ha-1 to 333 stems ha-1) of post-fire aspen regeneration in 11-year old burns exceeded the height necessary to escape mule deer browsing (150 cm). Browsing may also be altering aspen growth form, such that multi-stemmed aspen regeneration was positively associated with proportion of aspen regeneration browsed. These four case studies indicate that the effects of prescribed fires on quaking aspen in the southern Cascade Range of northern California were highly variable and, when coupled with biotic factors (such as deer browsing and competing vegetation) and varying fire severity, fire may either benefit or hasten the decline of small aspen groves.

View entire article (PDF)   View entire article (PDF)